Life
The details of the origin of life are unknown, though the broad principles have been established. Two schools of thought regarding the origin of life have been proposed. The first suggests that organic components may have arrived on Earth from space, while the other argues for terrestrial origins. The mechanisms by which life would initially arise are nevertheless held to be similar. If life arose on Earth, the timing of this event is highly speculative—perhaps it arose around 4 billion years ago. In the energetic chemistry of early Earth, a molecule (or even something else) gained the ability to make copies of itself–the replicator. The nature of this molecule is unknown, its function having long since been superseded by life’s current replicator, DNA. In making copies of itself, the replicator did not always perform accurately: some copies contained an “error.” If the change destroyed the copying ability of the molecule, there could be no more copies, and the line would “die out.” On the other hand, a few rare changes might make the molecule replicate faster or better: those “strains” would become more numerous and “successful.” As choice raw materials (“food”) became depleted, strains which could exploit different materials, or perhaps halt the progress of other strains and steal their resources, became more numerous.cator might have developed. Different replicators have been posited, including organic chemicals such as modern proteins, nucleic acids, phospholipids, crystals, or even quantum systems. There is currently no method of determining which of these models, if any, closely fits the origin of life on Earth. One of the older theories, and one which has been worked out in some detail, will serve as an example of how this might occur. The high energy from volcanoes, lightning, and ultraviolet radiation could help drive chemical reactions producing more complex molecules from simple compounds such as methane and ammonia. Among these were many of the relatively simple organic compounds that are the building blocks of life. As the amount of this “organic soup” increased, different molecules reacted with one another. Sometimes more complex molecules would result—perhaps clay provided a framework to collect and concentrate organic material. The presence of certain molecules could speed up a chemical reaction. All this continued for a very long time, with reactions occurring more or less at random, until by chance there arose a new molecule: the replicator. This had the bizarre property of promoting the chemical reactions which produced a copy of itself, and evolution began properly. Other theories posit a different replicator. In any case, DNA took over the function of the replicator at some point; all known life (with the exception of some viruses and prions) use DNA as their replicator, in an almost identical manner
No comments:
Post a Comment